第一步,在spring boot框架的pom.xml配置文件中引入Maven依赖。
<!-- cache --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-cache</artifactId> </dependency> <!-- redis --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency>
第二步,在application.yml中配置Redis连接信息。
#redis缓存配置 redis: # 使用的数据库,默认为0 #database: 1 # host主机,默认为localhost host: localhost # 端口号,默认为6379 port: 6379 # 密码,默认为空 password: xxxxxxxxxxxxx
第三步,写一个公共的RedisService方便调用。
package com.allen.blog.service; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.*; import org.springframework.stereotype.Service; import java.io.Serializable; import java.util.List; import java.util.Set; import java.util.concurrent.TimeUnit; @Service public class RedisService { @Autowired private RedisTemplate redisTemplate; /** * 写入缓存 * @param key * @param value * @return */ public boolean set(final String key, Object value) { boolean result = false; try { ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue(); operations.set(key, value); result = true; } catch (Exception e) { e.printStackTrace(); } return result; } /** * 写入缓存设置时效时间 * @param key * @param value * @return */ public boolean set(final String key, Object value, Long expireTime) { boolean result = false; try { ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue(); operations.set(key, value); redisTemplate.expire(key, expireTime, TimeUnit.SECONDS); result = true; } catch (Exception e) { e.printStackTrace(); } return result; } /** * 批量删除对应的value * @param keys */ public void remove(final String... keys) { for (String key : keys) { remove(key); } } /** * 批量删除key * @param pattern */ public void removePattern(final String pattern) { Set<Serializable> keys = redisTemplate.keys(pattern); if (keys.size() > 0) redisTemplate.delete(keys); } /** * 删除对应的value * @param key */ public void remove(final String key) { if (exists(key)) { redisTemplate.delete(key); } } /** * 判断缓存中是否有对应的value * @param key * @return */ public boolean exists(final String key) { return redisTemplate.hasKey(key); } /** * 读取缓存 * @param key * @return */ public Object get(final String key) { Object result = null; ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue(); result = operations.get(key); return result; } /** * 哈希 添加 * @param key * @param hashKey * @param value */ public void hmSet(String key, Object hashKey, Object value){ HashOperations<String, Object, Object> hash = redisTemplate.opsForHash(); hash.put(key,hashKey,value); } /** * 哈希获取数据 * @param key * @param hashKey * @return */ public Object hmGet(String key, Object hashKey){ HashOperations<String, Object, Object> hash = redisTemplate.opsForHash(); return hash.get(key,hashKey); } /** * 列表添加 * @param k * @param v */ public void lPush(String k,Object v){ ListOperations<String, Object> list = redisTemplate.opsForList(); list.rightPush(k,v); } /** * 列表获取 * @param k * @param l * @param l1 * @return */ public List<Object> lRange(String k, long l, long l1){ ListOperations<String, Object> list = redisTemplate.opsForList(); return list.range(k,l,l1); } /** * 集合添加 * @param key * @param value */ public void add(String key,Object value){ SetOperations<String, Object> set = redisTemplate.opsForSet(); set.add(key,value); } /** * 集合获取 * @param key * @return */ public Set<Object> setMembers(String key){ SetOperations<String, Object> set = redisTemplate.opsForSet(); return set.members(key); } /** * 有序集合添加 * @param key * @param value * @param scoure */ public void zAdd(String key,Object value,double scoure){ ZSetOperations<String, Object> zset = redisTemplate.opsForZSet(); zset.add(key,value,scoure); } /** * 有序集合获取 * @param key * @param scoure * @param scoure1 * @return */ public Set<Object> rangeByScore(String key,double scoure,double scoure1){ ZSetOperations<String, Object> zset = redisTemplate.opsForZSet(); return zset.rangeByScore(key, scoure, scoure1); } }
第四部,测试读写数据。
package com.allen.blog; import com.allen.blog.service.RedisService; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.test.context.junit4.SpringRunner; @RunWith(SpringRunner.class) @SpringBootTest public class BlogApplicationTests { @Autowired private RedisService redisService ; @Test public void contextLoads() { redisService.set("liqinglin","liqinglin0314"); System.out.println(redisService.get("liqinglin")); } }
结果:
数据已经存了进来,但是数据出现\xAC\xED\x00\x05t\x00\x09这样的乱码,spring-data-redis的RedisTemplate<K, V>模板类在操作redis时默认使用JdkSerializationRedisSerializer来进行序列化,解决方法只需要在RedisService中添加如下代码:
@Autowired private RedisTemplate redisTemplate; @Autowired(required = false) public void setRedisTemplate(RedisTemplate redisTemplate) { RedisSerializer stringSerializer = new StringRedisSerializer(); redisTemplate.setKeySerializer(stringSerializer); redisTemplate.setValueSerializer(stringSerializer); redisTemplate.setHashKeySerializer(stringSerializer); redisTemplate.setHashValueSerializer(stringSerializer); this.redisTemplate = redisTemplate; }
这样乱码问题就解决啦~